Math 215 - Problem Set 2: Vector Functions and Space Curves, Derivatives and Integrals of Vector Functions, Arc Length, Motion in Space.

Math 215 SI

January 26, 2025

1 Review

1.1 Vector Functions and Space Curves

1.1.1 Vector Function Definition

A vector function is a function that takes a real number as input and outputs a vector. It can be written as $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f(t), g(t), and h(t)are scalar functions of t.

1.1.2 Space Curve Definition

A space curve is the set of all points $\mathbf{r}(t)$ in space as t varies over an interval. It can be thought of as the path traced out by a particle moving in space.

1.1.3 Integrals, Derivatives, and Limits

Consider a vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$.

- The derivative of $\mathbf{r}(t)$ is $\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$.
- The integral of $\mathbf{r}(t)$ is $\int \mathbf{r}(t)dt = \langle \int f(t)dt, \int g(t)dt, \int h(t)dt \rangle$.
- The limit of $\mathbf{r}(t)$ as t approaches t_0 is $\lim_{t \to t_0} \mathbf{r}(t) = \langle \lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t), \lim_{t \to t_0} h(t) \rangle$.

1.1.4 Tangent Lines

The tangent line to the curve $\mathbf{r}(t)$ at the point $\mathbf{r}(t_0)$ is the line that passes through $\mathbf{r}(t_0)$ and has the same direction as the velocity vector $\mathbf{r}'(t_0)$.

1.2 Arc Length

Given a curve parameterized by $\mathbf{r}(t)$ the arc length L between $\mathbf{r}(a)$ and $\mathbf{r}(b)$ is given by:

$$L = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

1.3 Motion in Space

Given a position vector $\mathbf{r}(t)$ that describes the position of a particle at time t, the velocity vector is $\mathbf{v}(t) = \mathbf{r}'(t)$ and the acceleration vector is $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

2 Problems

Problem 1

- (a) Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t), \frac{2}{3}t^{\frac{3}{2}} \rangle$ from t = 0 to $t = \pi$.
- (b) Find the equation of the tangent line to the curve given in part (a) at t = 0.
- (c) If t is the time, find the speed of the particle at time $t = 2\pi$.

Problem 2

In this problem all coordinates are measured in meters and time is measured in seconds. At time t = 0 a ladybug, named Sam, is at position (1, 1, 1) and is flying with constant velocity < 1, 2, 3 > meters per second. A sensor placed at (3, 6, 7) can detect ladybug motion that occurs within a sphere of radius 7 meters. Does the sensor detect Sam? If so, at what time is Sam last detected by the sensor?

Problem 3

The trajectory of a particle is given by $r(t) = \sqrt{3}t^2, 2t^3, \sqrt{6}t^2 >$. Let C denote the corresponding space curve.

- (a) Find an equation of the tangent line to C at the point $(4\sqrt{3}, 16, 4\sqrt{6})$.
- (b) How long is C on the interval $0 \le t \le \sqrt{8}$?